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By Patrick L. Donoughe

SUMMARY

Perturbation solutions of equations for laminaer incompressible flow
in a semiporous channel are presented, and the results are compared with
those cbtained from a fully porous chamnel. The perturbation paremeter
measures the amount of suction or injection (blowing) at the porous
- wall; positive values denote suction, and negative values denote blowing.

In the semiporous channel, with a given value of the perturbation
parameter, blowing decreased the friction parameter at the porous wall
by 25 percent, and suction increased the wall friction parameter by SO
percent. For both semlporous amd fully porous chennels, the pressure in
thelongitudinaldirectiandecreaaedforzeroandblowingvaluesofthe
perturbation parameter. Sufficiently high suction values resulted in a °
pressure rise in the fully porous channel. Elither suction or blowing
hes more influence cn the local dimensionless veloclty profiles and the
wall friction parameter for the semiporous than for the fully porous
channel.

. INTRODUCTION

Experimental results for flow in a rectangular channel with injec-
tion through a porous wall are glven In reference 1. Varlous porous
samples were Installed In the lower wall; the upper wall was solid. In
the experiments, conducted with turbulent flow, the injection of air
through the porous wall markedly influenced the shape of the velocity
profile. The friction at the porous wall was obtalined only qualita~
tively. The flow was developed with no injection, but not developed
vhen there was flow through the porous wall. Although additional tests
are indicated, it appears that some other geametry may be better sulted
for the experimental investigation, and an analysis 1s needed to guide
‘the selection of the geametry. A significant turbulent-flow analysis
requires experimental data fram the apparatus being sought, but laminar
flow mey be treated theoretically. As part of the study to guide future
experiments, laminar.flow in a semiporous chammel 1s investigated here-
in. Resulits are compared with similar results in a fully porous chammel.
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Such an Investigation has intrinsic value. Where the flow is re-
stricted by the proximity of bounding walls, it falls in the category of
either channel or pipe geametry.. Such flow and geometry are found inside
bodies such as turbine blades and the skins of high-speed missiles whose
wall temperatures are reduced by the transpiration-cooling process.
Ancther application is for the eguipment used in the separation of 1so-
topes by the gaseous diffusion process. The present study should be of
interest in these applications. )

Laminar flow In a channel with fully porous walls was studied ana-
lytically by Bermen (ref. 2). Although only suction through the wall
was consldered, results may be calculated readily for injection through
the wall. Before the publication of reference 2, Berman pointed out the
simllarity between the flows in porous and semiporous chammels (ref. 3).
The solution, however, was not given for the semiporous channel.
Berman's results for the fully porous channel, obtained by first-order
perturbation solutions and, therefore, valid for anly small suction or
injection, are extended to large values of suction by Sellars (ref. 4) 1

In the present investigation, a third-order perturbation solution
for laminar incompressible flow in a semliporous channel is presented.
Two-dimensional flow is considered. Velocity distributions, wall fric-
tion, and pressure drop are obtalned from the solution for both suction
and blowing through the porous wall. A second-order perturbation solu-~
tion 18 also cbtalined for the fully porous channel for camparison with
results from the semlporous channel.

SYMBOLS

A,B constents of integration (egs. (12) and (Al))

£ friction coefficient, u%“)w/lz'pﬁz(x)

g dimensionless stream function (eq. (6))
g',8", ~first, second, and third derivatives of g with respect to A

1 gifferent study of the flow in a fully porous channel with large
suction has been reported recently in an article by S. W. Yuan, entitled
"Further Investigation of Laminar Flow in Channels with Porous Walls."
Jour. Appl. Phys., vol. 27, no. 3, Mar. 1956, pp. 267-269.
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channel height

static pressure

Pressure-change parameter in x-direction (egs. (27) and (A7))
pressure-change parameter in y-direction (eqs. (28) and (A8))
main-flow Reynolds mmber, Zu(x)h/v

main-flow Reynolds number, 2a(0)n/v

wall Reynolds mmber for fully porous chennel, v,h/v

wall Reynolds number for semiporous chamnel, v, h/2v

velocity defined by eq. {7)

fluld velocity parallel to wall

fluld velocity normal to wall

channel width (fig. 1)

distance in mein-flow direction

distance in normal flow direction
nondimensional stream function for fully porous chanmel

first, second, and third derivatives of I' with respect to A
nondimensional normal distance for fully porous chammel, 2y/n
nondimensional normal éistence for semiporous chammel, y/h
viscoslity of fluld

kinematic viscosity of fluid, p/p

density of fluid

shear stress

stream function




Subscripts:

b bottam wall

£p fully porous channel
max maximm

b porous wall

] solid wall

sp semiporous channel
t top wall

W wall

b 4 x-direction

y y-direction
Superscript:

average values

ANATYSIS
Iaminar-Flow Equations

NACA TN 3759

A sketch of the geometry and flow system for the semiporous channel
is given in fi l. The following development parallels that of
Bermen (ref. 2). The channel width is assumed much greater then the
channel height; therefore, only two~dimemnsional flow need be considered.
The Navier-Stokes equations for two-dimensional steady-state inc 8=
sible laminaer flow neglecting body forces are (e.g., ref. 5, p. 4.8§

”5"1%” ax2 :;)

ug+v%§—-3 +V(azv ::VZ)

and the contimuity equation is

B0

(1)

(2)

(5)
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The boundary conditions imposed on the system are
¥y =0 (s0lid wvall), u=0; v =0 W
4
¥ = b (porous wall), u = 0; v = v, = constant
Transformation of Equations

The transformation of equations (1) and (2) is accamplished by the
uge of the substitutions

A=L (5)
and
Y ¥
g(A) = — = (s)
- i)
nfw(0) - I;il
where
T =H(0) - = (7)

and TU(0) is the average velocity at x = 0. Since g = gfA) only, the
A will be omitted hereafter.

The continuity equation (3) is satisfied by the stream function ¥,
since

and > (8)

Use of equations (1), (2), and (4) to (8) ylelds

1% - e - 02 - ] ®)

- %g% = v,&r,,gg' - %g") - (10)




6 NACA TN 3759
Since the right side of equation (10) is a function of A only

(v = constant),
- "

Since T # 0, on differentiating with respect to A, using equation (11},
and integrating, equation (9) becomes

Re, ople'? - gg") +g'"" = A (12)
where
V,
Re“.‘,sP s~ ) (13)

The boundery conditions (egs. (4)) became
A =0 (solid wall), g' =0; g =0
(14)
A =1 (porous wall), g' =0; g =1
Equations (12) to (14), in the present notation, are identical to those
glven in reference 3.
Solution of Bguation

For small values of Rew,s;p! the perturbation solution of equation
(12) 1s obtained by expanding g and A near Rey,gp = Ot

8 = o + EyRey op + BgRel o + EgRey o+ o o - (15)
A"Ao"‘AlRew,sp"'AzRﬂ%,sp"'ASRe?r,sp"'"' (1)

Substituting equations (15) and (16) into equation (12) and equating
like powers of Rew,sp yield

86“=A0 (17)
&'’ =4 + &gy - &P (18)
8'" = Ay - 2Eg8) + BBy + 189 (19)

B5'" = Ay - 2808} + BoEp + €187 + 8,80 - €17 (20)

9S0¥
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subject to boundary conditlions

for A =0 (solid wall), g} = 0; g, = O

(21)
for A =1 (porous wall), g} =0; gg =1, 859 =0

Use of equations (15) to (21) ylelds the third-order solution of
equation (12):

g =322 . 25 4 Rew,sp (<1622 + 27a5 - 212° + 1428 - A7) +

70
_Belop 2 3 5 6
1,527,600 (-5,327\° - 41,006)\" + 206,976)° - 243,628)° +
99,7927 - 24,255\8 + 21,5600° - 17,24810 + 3,136011) +
3
1,7—259-‘,'-%‘8%60'3 (480,343)2 - 796,742)° - 2,659,566)° + 6,649,91625 -

4,666,740\7 + 2,162,16028 - 2,902,9000° + 3,107,104310 -

2,255,526 X1 + 1,729,455x2 - 1,234,800015 + 446,88001% - 59,584219)
(22)

As -12 4 81 Re,, 2,929 , 2 398,371

3
35 Rev,sp - 53.900 Few,sp ~ 147,147,000 ew,ep  (23)
Absolute convergence of the series given by equations (22) and (23) has

not been found. The perturbation solution, however, 1s campared with a
numerical solution of equation (12) in the section Accuracy of Results.

Formulas for Velocity, Pressure, and Friction

The average velocity at an x location 1s given by

ufx) ==fl u(x,A) dx
0
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Use of eguations (6) to (8), (13), and (14) shows that

T = %(x) = %0) [1 - %’%] - u(o)é - 33—;:.1?-?1’1‘) (22) .

Reg = zu(0)h

v

Then, from equations (8), (24), and (22),
[%’&}).]- g = 6(A-22) + -R—e'%ﬂ (-32 + 8122 - 1053% + 8aa® - 2606) +
2

5 1:;; (-5,327A - 61,5092% + 517,4400* - 730,88005 +
3 £

349,272%° - 97,020V + 97,0200 - 86,2400° + 17,248210) 4

3
_E_‘JI.E-P_WRE" (960,686 - 2,390,226)\> - 13,297,8300F +
1,768, 764,

39,899,496%° - 32,667,180% + 17,297,28007 - 26,126,10008 +

51,071,040M9 - 24,810,786)\° + 20,753,460)1 - 16,052,400X12 4+

6,256,32035 - 893,760014) (25)
The veloclity ratio given in equation (25) is a function only of Rey,gp

and position A but not position x. Thus, the flow may be considered
to be developed.

Integrating dp(x,\) = g ax + g% d\ and using equations (9), (10),
(12), (13), and (21) result in the pressure

p(x,2) = p(0,0) +l§§ Tl(O)x[l - EZ%‘J)EE] o pv;gz) (26)

The pressure change in the x-direction may then be found from equations
(26) and (23):

9S0Y
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ggx,xz p(0,1) 2,929 .2
APy, p = ..2(0) = -24 + 222 Re":BP 26,950 Reg, ap

__ 796,742 )
147,147,000 ow B}) ( - “'R’ég.‘) (27)
Note that A does not appear on the right side of equation (27). This

is & consequence of equation (11) and results from the assumption of a
constant vy. Similarly, the pressure change in the y-direction 1s

2
Ap = g(l:x) -2(0;1) = p(A ,x) 'LQL’E)_GZ: Reo = 28" _ g2
I, %P % pv‘zf % pu2(0) Rey, Rey sp

(28)
The shear stress is glven by

and the friction coefficlent may be defined as

Tw

£ = —a—
2pu(x)

(30)

Using equations (25), (29), and (30), the friction for the porous wall
i1s obtained as

5"51) » 124,033 2 2,717,125 . 3
_BZ%L' =54 75 By, ap + ;527,600 2°w,8p * T,765,764,000 "W, D
(31)

(The negative sign appears because y increases as the porous wall is
approached) and, for the solid wall, as

52, g ) .s_ 8 5,321 n 2 480, 343 3
5 - 5 ®ew,sp - £;5%7,600 V.8 + T;765.764,000 ¥, 5P

(32)

vhere Re = Zu(x)h/v.
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Accuracy of Results

In order to estimate the accuracy of the solution for the fully
porous c’ha.nnel, the results from the perturbation solution are compared
with the results from a mmerical solubtion In teble I. The comparison

is md.e for Rew,sp = -4:.0-

Equation (12) was solved numerically by desk computation using the
method of Picard (ref. 6, ch. XI). The characteristic values necessary
for mmericel integration of equation (12) are g"(0) anmd A. The initial
guesses for these values were taken from the perturbation solution. Suc-
cesslve trials finally gave the numerical results listed in teble I. As
is customary in problems of this type, g"(0) and A must be obtained
more eccurately than g' for a given accuracy in g'.

Comperison of the numerical and perturbation solutions shows that
g"(0) from the third-order perturbation solution is accurate to within
0.13 percent, and g"(1) is accurate to within 0.4 percent. (It is
assumed that the numerical solution is correct.) This difference is
expected from equations (31) and (32). A 1is accurate to within 0.008
percent. For values of IRew,spF 4, the third-order perturbation solu-

tlon should be accurate to within 0.1 percent.

RESULTS AND DISCUSSION

The effects of flow through a porous wall are presented and dis-
cussed for semlporous end fully porous chamnels. The third-order solu-
tion for the semiporous chammel is given in the ANALYSIS section; the
second-order solution for a fully porous channel is given in the appendix.
Some of ‘the pertinent results of these solutions are listed in table II

for different values of Rey,gp.

Veloclty Profiles

The local velocity ratic u(x,A)/u(x) in the chamnel is shown in
figure 2(a) for one porous and one soiid wall, and for the fully porous
channel. Both parts of the figure have Rew,sp as the parameter. For
Rey,gp = O = Rey,fp, both curves are ldentical and the solutions of equa-

tions (12) and (A1) are exact.

Blowing (injection) occurs for Rey,gp<0 and is shown qualitatively
in figure 1; suction occurs for Re, BP>°‘ Positive values of Rew,sp

place limits on x/Regh . These limits are obtained by setting
U(x) = O. Then, from equations (24) and (A6a), since T(0) % O,

nCak
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(@eﬁ)m - m—l-’; (33)
and

for the semiporous chemnmel,

1

(Coex " T (34)

for the fully porous chammel. For lRe'w’SI.,|>O, there is a greater
effect of Rew,sp on the local veloclity ratio 1n the semlporous channel
than In the fully porous channel. This may be seen by comparing both
parts of figure 2(a).

Although uft(x) is not a function of x, the velocity ratio u/d(0)
is related to x. From equations (24) and (25),

2Rey
oty - - TR (=)
and, from equations (AS), .
u éRe‘T T
oy (1 o). ()
These velocity ratios are glven in 2(b) for Rey gp = 0, 4, ond

-4 with the dimensionless distance Regh as parametef.” The

(Rey,gp = -4) end reterdation (Rey, gp = 4) of the velocity ratio u/fw(0)
are evident. These velocity ratios are influenced more by wall Reynolds
number in the fully porous chamnnel than in the semiporous channel.

Note that, for a given value of Rey gp, the general shape of the
curve is unchanged, even though the maximum values are different (fig.
2(b)). In a porous chammel it is evident that fully developed flow de-
fined by the velocity invarieble with flow direction cammot he achieved. -
But, if fully developed flow 1s defined as a constant value of
u(x, N/G(x) for increasing flow direction (with A f£ixed), then there
1s obtalned analytically fully developed flow in both the semlporous and
fully porous channels when the suction Reynolds mmiber is fixed (cf.,
eq. (25) apd figs. 2(a) and (b)).

Pressure Distributions
The dimensionless pressure parameter in the y—directién is

presented in figure 3. These results are obtained by use of equations
(28) and (A8). There is no pressure change across the chamnnel when the
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walls are solid (vw==0). In figure Ssa), when there is suction, the
pressure parameter Apy (and hence p(y,x)) is higher than at the solid
wall over most of the chanmnel. For injection (blowing), the pressure in
the channel is always less than at the solid wall. For either large suc-
tion or injection, Apy,sp will always be less than at the so0lid wall.
This may be been by letting Re, o, += in equation (28); since g2 is
always positive, Apy,sp will be negative.

The pressure-change parameter Apy pp (fig. 3(b)) is referenced to
the pressure at the center of the channel. Negative values of
Rew,sp = ZRew,IP result in positive values of A;py fp° Again It 18

Pound thet, for either large suction or injection, %he pressure parameter
will be negative over the full chemmel, except at the center where 1t is
zero. Such a solution is given by Sellars (ref. 4).

The results in figure 3 may be used to estimate the static-pressure
drop ecross the chammel. Equations (28) and (A8) may be expressed as

a

x) - p(O,x Rey

€72
where A;py is given in figure 3. Use of this equation and figure 3 shows
that, when Apy is large, Rew, is emall, and vice versa. Hence, for
the usual value of Rey gp/Reg %:ay 0.01), the pressure change across the
channel cross section be small compared with the inlet dynamic head
(%puz(o). This ssure chenge is also small compared with the local
dynamic head (}- (x)) when there is blowing. With suction, however, the
change may not small compared with the local dynamic head, especlally
for large x/Regh (approaching (x/Regh)pay) -

The pressure-change perameter in the x-direction Apy 1is given in
figure 4 for O < x/(Regh)<0.25 and in figure 5 for 0<x/(Regh)<0.035.
For both the semiporous and fully porous channels these figures indicate
that Apy decreases for Rey, gp<0 (blowing) . When Rey, gp> 0, how-
ever, the analysis indicates a pressure rise Apy>0 1n the fully porous
channel for sufficiently high values of Rey,gp (a similar result was
noted in ref. 3). The same situation should obtain 1f solutions for
higher values of Rey gp are avallable for the semiporous channel. An
explanation for this pressure rise may be as follows:

When solved for the pressure gradient, a momentum belance for a unit
width of a channel ylelds

h
%;% = - %‘E"”w,t + Ty,b) + %‘f pu? d{‘ (37)
0

»
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The wall shear stresses on the top and bottom walls are positive and of
the same order of magnitude. When there is fluid injection, the momentum
integral increases in flow direction; therefore, the pressure gradient
decreases in flow direction. For the impermeeble chammel with fully
developed flow, the momentum integral does not change in flow direction,
so that the pressure gradient is still negative. With fluid suction,
however, the integral term 1s negative. If the suction is sufficiently
large, the integral term overcomes the shear terms and a pressure rise
results (Ap,>0).

Friction

The effects on the friction parameter of flow through the walls of
& channel are presented in figure 6. The friction parameter is given for
both the semiporous and fully porous chammels for -4£Bew,sp£4. The
friction parameter at Rey, gp = O is well established (ref. 7, p. 309;
ref. 8, p. 51). Since there is a different boundary condition at each
wall in equation (12), the effects of the flow through the wall are dif-
ferent at each wall of the semiporous channel. At the solid wall, blowing
increases the friction parameter; at the porous wall, blowing decreases
the friction parameter (fig. 6). The friction parameters at the porous
well for the semiporous channel for Rey,sp = 4 and Rey,gp = -4 are
50 percent sbove and 25 percent below, respectively, that of an imperme-
gble wall. Corresponding mmbers for the fully porous channel are 7 and
4.4 percent.

Although the friction parameter fRe/8 18 not a function of x
(e.g., ea. (31)), the friction coefficient £ 1s.related to x, since
Re = 2U(x)h/v. The average velocity u(x) is increased by blowing and
decreased by suction. The effects of variations in the wall Reynolds
nunber Rey g, therefore, are greater on the friction coefficlent £

than on the friction paremeter f£Re/8.

SUMMARY OF RESULTS

Analytical solutions for incompressible laminar flow in a semiporous
channel have been presented. A perturbation method was used to obtain
the solutions. Results were compared with those for a fully porous
chanmel. Some of the principal results are as follows:

1. Either suction or blowing is more influential on the wall fric-
tion parameter for the semiporous than for the fully porous chennel. For
wall Reynolds mmbers 6f 4 and -4, the friction parameter at the porous
wall of the semiporous chammel is Increased by SO percent and decreased
by 25 percent, respectively, from the value for impermeable chamnels.
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In the semiporous channel, blowing diminishes the friction parameter at
the porous wall and increases 1t at the solid wall; suction at the porous
wall acts conversely. The friction coefficient behaves similarly.

2. The pressure ln the longitudinsl direction decreases for zero
and for blowing values of the wall Reynolds mmiber. This pressure drop
occurs in both the semiporous and fully porous channels. A pressure in-
crease was found for higher suction values in the fully porous channel
and is Indicated for the semiporous channel.

3. For both the semiporous and fully porous channels, the pressure
change across the channel 1s small compared with the inlet dynamic heed.
Compared with the local dynamic head, the change is small for injection
but may not be small for blowing at large values of the dimensionless
distance x/Regh.

4. For a given value of the wall  Reynolds number, the local velocity
ratlos are changed more 1n the semiporous than the fully porous chennel.
The velocity ratio built with inlet veloeity acts conversely.

Lewis Flight Propulsion Iaboratory
Netional Advisory Committee for Aeronautics
Cleveland, Ohio, April 25, 1956

9C0%
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AFPPENDIX - FORMULAS FOR A FULLY POROUS CHANNEL

Small Suction or Injectlion
The equetion for a fully porous chamnel corresponding to equation
(12) for a semiporous channel is given in reference 2 as, in the present
notation,

Rey,pp (I'2 -TT") + """ =B (A1)

A

¥y being measured now from midchammel (fig. 2(a)), since the flow is
symmetrical about this plane. Boundary conditions are

A =0 (midchammel), I'=0; I'" =0
A=1 (porous wall), '=1; I'" =0

The zero- and first-order solutions from reference 2 are

=X - A%
Ty E(31 A®) )
I =L (385 - 24 - A7)
1l 280 (a2)
By = -3
Bﬁl
By =35 j
and the second-order equation is glven as
rz'' =By + Lol + T - 2NgT )
" subJect to
n A3
A=0 T, =0 =T}, (a3)
1
A= 1 :['2=Ol=-1"2
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Integration of the equation for TI)'' and use of equation (A1) yield

- 2 - 3 4 Bew 3 _ 7
P=To+ Tj R oo + TR o 3 (34 A)+_éé.§2(u 20 -A) +

2
BeW,fp (g 021 + 6,135205 + 1,38647 - 2,69549 + 984Y)
9,055, 200

(a4e)

2 ' 81 2
B = By + ByRe, o + BoRey o = -3 + 2= Rey gy -Tg%gne‘,’fp (a5)

From these relations, the velocity, pressure change, and friction
mey be obtained in the same manner as for the semiporous chamnel:

']

T—I(E)-ar'n—g-(l-Az)-l-Eze’-d&(gﬁa-z-"As)‘l'

2
_SeW,fp_ (4,921 + 18,3964% + 9,70285 - 24,2558 + 1,0784'0)
9,055,200

(as)
where |

ﬁ(x).u(o)l-imf—“nefﬁﬁ)

x,\) - p(O, A\ 8Bvx [ -] (x _2 )(. 648 -

R R
2

Re,, »
2522 5 )0 - o Zp)

(268)

(a7)
: 2
-Mﬁ,(ﬂﬂ-lmx)_mﬁ_). 2 ' (o) 12
.20 = ov2 L ouf(o) \¢Bew,fp Re":fP[r ron-r
2 2 (28)
£_ Re
._135__.

ENCPEI RPNLL. I A

9807
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TABLE I. - COMPARISON OF PERTURBATION AND NUMERICAL

SOLUTIONS OF BQUATION (12) FOR Rey g = -4.0.

Pexrturbation Numerical
(Picard's method)

7.756 g"(0) 7.747
~21.953 A -21..955
-4.508 g"(1) -4.525

o gio) o]
1.000 g(1) 1.000

g A g

0 0 o]
0.360 .05 <367
.667 .10 671
1.125 .20 1.129
1.397 .30 1.400
1.509 " .40 1.511
1.486 .50 1.488
1.351 .60 1.351
1.121 .70 1.120
.810 .80 .808
431 .80 431
.221 .95 .221

0 1.00 0

TABLE 1I. - VALUES FOR USE IN FRICTION AND

PRESSURE-CHANGE RELATTIONS

Wall Reynolds Semiporous channel Fully porous
mumber, . channel
Reg,ep ;8_;1}[ ._51'2.(9_)_ A |- -B

4 4.623 | 2.084 3.786 | 5.210 | -1.559
3 4.103 | 2.311 5.820 | 3.151 432
2 3.665 | 2.540 7.610 | 3.095 « 703
1 3.300 | 2.771 9.742| 3,045 | 1.847
o 3 3 12 3 3
-1 2.755 | 3.227 |14.37 | 2.960 | 4.161
-2 2.554 | 3.450 {16.82 | 2.924 | 5.332
-3 2.391 | 3.668 |19.36 | 2.893 | 6.510
-4, 2.254 |3.878 |21.95 | 2.868 | 7.698
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Figure 1. - Geomeotry and flow in semiporous chammel.
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